Weakly directed self-avoiding walks

نویسندگان

  • Axel Bacher
  • Mireille Bousquet-Mélou
چکیده

We define a new family of self-avoiding walks (SAW) on the square lattice, called weakly directed walks. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model. Résumé. Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appelés chemins faiblement dirigés. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent. Nous déterminons leur série génératrice. Cette série a une structure de singularités complexe et n’est en particulier pas D-finie. La constante de croissance est environ 2,54, ce qui est supérieur à toutes les familles naturelles de SAW étudiées jusqu’à présent, mais inférieur aux CAE généraux (dont la constante est environ 2,64). Nous prouvons également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une variante diagonale du modèle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Weakly Self-avoiding Walks

We define a class of weakly self-avoiding walks on the integers by conditioning a simple random walk of length n to have a p-fold self-intersection local time smaller than nβ, where 1 < β < (p+1)/2. We show that the conditioned paths grow of order nα, where α = (p− β)/(p− 1), and also prove a coarse large deviation principle for the order of growth.

متن کامل

An expansion for self-interacting random walks

We derive a perturbation expansion for general interacting random walks, where steps are made on the basis of the history of the path. Examples of models where this expansion applies are reinforced random walk, excited random walk, the true (weakly) self-avoiding walk and loop-erased random walk. We use the expansion to prove a law of large numbers and central limit theorem for two models: (i) ...

متن کامل

Relations between connected and self-avoiding walks in a digraph

Walks in a directed graph can be given a partially ordered structure that extends to possibly unconnected objects, called hikes. Studying the incidence algebra on this poset reveals unsuspected relations between walks and self-avoiding hikes. These relations are derived by considering truncated versions of the characteristic polynomial of the weighted adjacency matrix, resulting in a collection...

متن کامل

A Self-avoiding Walk with Attractive Interactions

A powerful tool for the study of self-avoiding walks is the lace expansion of Brydges and Spencer [BS]. It is applicable above four dimensions and shows the mean-field behavior of self-avoiding walks, that is, critical exponents are those of the simple random walk. An extensive survey of random walks can be found in [MS]. The lace expansion was originally introduced for weakly self-avoiding wal...

متن کامل

Ballistic Phase of Self-Interacting Random Walks

We explain a unified approach to a study of ballistic phase for a large family of self-interacting random walks with a drift and self-interacting polymers with an external stretching force. The approach is based on a recent version of the OrnsteinZernike theory developed in Campanino et al. (2003, 2004, 2007). It leads to local limit results for various observables (e.g., displacement of the en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011